COURSE INFORMATION
Course Title: INTERMEDIATE STRUCTURAL DYNAMICS
Code Course Type Regular Semester Theory Practice Lab Credits ECTS
CE 548 C 1 2 2 0 3 7.5
Academic staff member responsible for the design of the course syllabus (name, surname, academic title/scientific degree, email address and signature) NA
Main Course Lecturer (name, surname, academic title/scientific degree, email address and signature) and Office Hours: Prof.Dr. Hüseyin Bilgin hbilgin@epoka.edu.al , Fridays, 10:00-12:00
Second Course Lecturer(s) (name, surname, academic title/scientific degree, email address and signature) and Office Hours: NA
Teaching Assistant(s) and Office Hours: NA
Language: English
Compulsory/Elective: Elective
Study program: (the study for which this course is offered) Professional Master in Civil Engineering
Classroom and Meeting Time: Fridays / 17:15-20:45 hrs,
Code of Ethics: Code of Ethics of EPOKA University
Regulation of EPOKA University "On Student Discipline"
Attendance Requirement: See EPOKA University attendance policy!
Course Description: Dynamic equilibrium of structures. The response of a single degree of freedom system to dynamic excitation: free vibration, harmonic loads, pulses and earthquakes. Response spectra. The response of multi-degree of freedom systems. Seismic behaviour of buildings and the basis of seismic building codes.
Course Objectives: Dynamic equilibrium of structures. Response of a single degree of freedom system to dynamic excitation: free vibration, harmonic loads, pulses and earthquakes. Response spectra. Response of multi-degree of freedom systems. Seismic behavior of buildings and the basis of seismic building codes.
BASIC CONCEPTS OF THE COURSE
1 an understanding of structural dynamics is important in the design and retrofit of structures to withstand severe dynamic loading from earthquakes, hurricanes, and strong winds...
2 to identify the occurrence and location of damage within an existing structure
COURSE OUTLINE
Week Topics
1 Single Degree of Freedom Systems;Free Vibration (Un-damped free vibration, Viscously Damped Free Vibration)
2 Response to Harmonic and Periodic Excitation (Harmonic vibration of undamped systems, Harmonic vibration of viscous damping, Response to a vibration generator
3 Response to Harmonic and Periodic Excitation (Harmonic vibration of undamped systems, Harmonic vibration of viscous damping, Response to a vibration generator
4 Response to Arbitrary, Step and Pulse Excitations (Response to unit impulse, Response to arbitrary force, Step force, Ramp or Linearly increasing force, Step force with rise time)
5 Response to Arbitrary, Step and Pulse Excitations (Response to unit impulse, Response to arbitrary force, Step force, Ramp or Linearly increasing force, Step force with rise time)
6 Numerical Evaluation of Dynamic Response (Selected topics such as; Central Difference Method, Newmarks)
7 Earthquake Response of Linear Systems (Earthquake excitation, Equation of motion, Response quantities, Response history, Response spectrum concept, Deformation- pseudo velocity- pseudo acceleration, response spectra, Peak structural response from the response spectrum);
8 Midterm
9 Earthquake Response of Inelastic Systems (Force-deformation relations, Normalized yield strength-ductility factor, Equation of motion and controlling parameters, Effects of yielding, Response spectrum for yield deformation and strength, Yield strength and deformation from response spectrum, Yield strength-ductility relation);
10 Generalized SDOF Systems (Selected topics; Generalized SDOF systems, rigid-body assemblages, Systems with distributed mass and elasticity
11 Generalized SDOF Systems (Selected topics; Generalized SDOF systems, rigid-body assemblages, Systems with distributed mass and elasticity
12 Free Vibration of MDOF Systems; (Natural vibration frequencies and Modes, Free vibration response)
13 Dynamic Analysis and Response of Linear Systems (Two-degree of freedom systems, Modal analysis)
14 Earthquake Response of Linear Systems (Modal analysis, Multistory buildings with symmetric plan, Peak response from earthquake response, Multistory buildings with symmetric plan);
Prerequisite(s): Exposure to linear algebra and matrices. You should have seen the following topics: matrices and vectors, (introductory) linear algebra and differential equations.
Textbook(s): Dynamics of Structures: Theory and Applications to Earthquake Engineering, A. Chopra (Prentice Hall). • Dynamics of Structures, J. L. Humar (Balkema, 2002) - Optional • Elements of Vibration Analysis, L. Meirovitch (McGraw-Hill, 1986) - Optional • Finite Element Procedures, K. J. Bathe (Prentice Hall, 1995) - Optional
Additional Literature: Additional Course Notes
Laboratory Work:
Computer Usage: SAP2000, MAthcad, Matlab, Excel
Others: No
COURSE LEARNING OUTCOMES
1 Fundamental theory of dynamic equation of motion
2 Fundamental analysis methods for dynamic systems
3 Dynamic properties and behavior of civil structures
4 Modeling approach of dynamic response in civil engineering applications.
COURSE CONTRIBUTION TO... PROGRAM COMPETENCIES
(Blank : no contribution, 1: least contribution ... 5: highest contribution)
No Program Competencies Cont.
Professional Master in Civil Engineering Program
COURSE EVALUATION METHOD
Method Quantity Percentage
Homework
2
10
Midterm Exam(s)
1
40
Final Exam
1
40
Total Percent: 100%
ECTS (ALLOCATED BASED ON STUDENT WORKLOAD)
Activities Quantity Duration(Hours) Total Workload(Hours)
Course Duration (Including the exam week: 16x Total course hours) 16 4 64
Hours for off-the-classroom study (Pre-study, practice) 1 43.5 43.5
Mid-terms 1 30 30
Assignments 5 4 20
Final examination 1 30 30
Other 0
Total Work Load:
187.5
Total Work Load/25(h):
7.5
ECTS Credit of the Course:
7.5
CONCLUDING REMARKS BY THE COURSE LECTURER

Students who violate University rules on scholastic dishonesty are subject to disciplinary penalties, including the possibility of failure in the course and/or dismissal from The University. Since such dishonesty harms the individual, all students, and the integrity of The University, policies on scholastic dishonesty will be strictly enforced. Academic honesty is fundamental to the activities and principles of a university. All members of the academic community must be confident that each person’s work has been responsibly and honorably acquired, developed, and presented. Any effort to gain an advantage not given to all students is dishonest, whether or not the effort is successful.