COURSE INFORMATION
Course Title: NETWORK SECURITY
Code Course Type Regular Semester Theory Practice Lab Credits ECTS
CEN 462 C 1 3 2 0 4 7.5
Academic staff member responsible for the design of the course syllabus (name, surname, academic title/scientific degree, email address and signature) NA
Main Course Lecturer (name, surname, academic title/scientific degree, email address and signature) and Office Hours: Assoc.Prof.Dr. Dimitrios Karras dkarras@epoka.edu.al , 10.00-18.00, Monday, Wednesday
Second Course Lecturer(s) (name, surname, academic title/scientific degree, email address and signature) and Office Hours: NA
Teaching Assistant(s) and Office Hours: NA
Language: English
Compulsory/Elective: Elective
Study program: (the study for which this course is offered) Professional Master in Computer Engineering
Classroom and Meeting Time: according to timetable at EIS
Code of Ethics: Code of Ethics of EPOKA University
Regulation of EPOKA University "On Student Discipline"
Attendance Requirement:
Course Description: Techniques for achieving security in multi-user computer systems and distributed computer systems: Basics of cryptography, network security applications and system security, conventional encryption and message confidentiality, public-key cryptography and message authentication, authentication applications. Electronic mail, IP, web.
Course Objectives: To present a thorough survey on network security technology. It covers important network security tools and applications, including all major Cryptographic algorithms and techniques, Security Protocols, Digital Signatures, Message and User Authentication techniques, cloud security, network access control, personal identity verification (PIV), mobile device security, S/MIME, IP Security, Kerberos, SSL/TLS, and X509v3. In addition, methods for countering hackers and viruses will be explored. Finally, fundamental security design principles, attack surfaces and attack trees, practical application of RSA, user authentication models, and comprehensive email security will be discussed.
BASIC CONCEPTS OF THE COURSE
1 Symmetric Cryptographic Algorithms
2 Public Key Cryptographic Algorithms
3 Security protocols
4 evaluating and reporting network security
COURSE OUTLINE
Week Topics
1 Introduction to Network Security
2 Symmetric Encryption and Message Confidentiality
3 Public Key Cryptography and Message Authentication
4 Key Distribution and User Authentication
5 Network Access Control and Cloud Security
6 Transport-Level Security
7 Wireless Network Security
8 Electronic Mail Security
9 IP Security
10 Malicious Software
11 Intruders
12 Firewalls
13 Exercises on Algorithms and Projects
14 Security Reporting
Prerequisite(s): Programming in high level languages, Basic Mathematics
Textbook(s): NETWORK SECURITY ESSENTIALS: APPLICATIONS AND STANDARDS SEVENTH EDITION William Stallings
Additional Literature: CRYPTOGRAPHY AND NETWORK SECURITY PRINCIPLES AND PRACTICE 2022 EDITION William Stallings
Laboratory Work:
Computer Usage:
Others: No
COURSE LEARNING OUTCOMES
1 to learn about Symmetric Cryptographic Algorithms
2 to learn about Public Key Cryptographic Algorithms
3 to learn about Security protocols
4 to learn about evaluating and reporting network security
COURSE CONTRIBUTION TO... PROGRAM COMPETENCIES
(Blank : no contribution, 1: least contribution ... 5: highest contribution)
No Program Competencies Cont.
Professional Master in Computer Engineering Program
1 Engineering graduates with sufficient theoretical and practical background for a successful profession and with application skills of fundamental scientific knowledge in the engineering practice. 5
2 Engineering graduates with skills and professional background in describing, formulating, modeling and analyzing the engineering problem, with a consideration for appropriate analytical solutions in all necessary situations 5
3 Engineering graduates with the necessary technical, academic and practical knowledge and application confidence in the design and assessment of machines or mechanical systems or industrial processes with considerations of productivity, feasibility and environmental and social aspects. 5
4 Engineering graduates with the practice of selecting and using appropriate technical and engineering tools in engineering problems, and ability of effective usage of information science technologies. 5
5 Ability of designing and conducting experiments, conduction data acquisition and analysis and making conclusions. 4
6 Ability of identifying the potential resources for information or knowledge regarding a given engineering issue. 5
7 The abilities and performance to participate multi-disciplinary groups together with the effective oral and official communication skills and personal confidence. 4
8 Ability for effective oral and official communication skills in foreign language. 4
9 Engineering graduates with motivation to life-long learning and having known significance of continuous education beyond undergraduate studies for science and technology. 4
10 Engineering graduates with well-structured responsibilities in profession and ethics. 5
11 Engineering graduates who are aware of the importance of safety and healthiness in the project management, workshop environment as well as related legal issues. 5
12 Consciousness for the results and effects of engineering solutions on the society and universe, awareness for the developmental considerations with contemporary problems of humanity. 5
COURSE EVALUATION METHOD
Method Quantity Percentage
Midterm Exam(s)
1
25
Project
1
20
Laboratory
1
15
Final Exam
1
40
Total Percent: 100%
ECTS (ALLOCATED BASED ON STUDENT WORKLOAD)
Activities Quantity Duration(Hours) Total Workload(Hours)
Course Duration (Including the exam week: 16x Total course hours) 16 3 48
Hours for off-the-classroom study (Pre-study, practice) 16 3 48
Mid-terms 1 3 3
Assignments 2 42.5 85
Final examination 1 3.5 3.5
Other 0
Total Work Load:
187.5
Total Work Load/25(h):
7.5
ECTS Credit of the Course:
7.5
CONCLUDING REMARKS BY THE COURSE LECTURER

N/A