EPOKA UNIVERSITY
FACULTY OF ARCHITECTURE AND ENGINEERING
DEPARTMENT OF CIVIL ENGINEERING
COURSE SYLLABUS
COURSE INFORMATIONCourse Title: RIVER MECHANICS |
Code | Course Type | Regular Semester | Theory | Practice | Lab | Credits | ECTS |
---|---|---|---|---|---|---|---|
CE 425 | D | 1 | 3 | 0 | 0 | 3 | 6 |
Academic staff member responsible for the design of the course syllabus (name, surname, academic title/scientific degree, email address and signature) | NA |
Lecturer (name, surname, academic title/scientific degree, email address and signature) and Office Hours: | Mirjam Ndini , 8:30-17:30 |
Second Lecturer(s) (name, surname, academic title/scientific degree, email address and signature) and Office Hours: | NA |
Teaching Assistant(s) and Office Hours: | NA |
Language: | English |
Compulsory/Elective: | Elective |
Classroom and Meeting Time: | Wednesday 18:00-20:45 |
Course Description: | This course covers principles of flow in open channels, conservation laws, critical flow, uniform flow, gradually varied flow, flow through hydraulic structures, unsteady flow, and some relevant software tools. Analytical and numerical techniques will be discussed; programming assignments will be carried out in common software & MATLAB |
Course Objectives: | The main objective of this course is to learn hydraulic design of open channels, floodplain design, and flood routing in channels. Open Channel flow classifications, definitions, flow types; Open Channels and its properties, types, and geometries; Energy and momentum principles, specific energy, characteristics of critical flow, and its applications. Flow control and measurements, Uniform flow, Chezy and Manning equations. Transient flow hydraulics, gradually varied flow, rapidly varied flow. |
COURSE OUTLINE
|
Week | Topics |
1 | Introducrion Open-channel flow |
2 | Energy and Momentum Principles |
3 | Uniform flow Steady flow in open channels |
4 | Channel design |
5 | Gradually varied flow |
6 | Transition flow |
7 | Rapidly varying flow Hydraulic jump |
8 | MID-TERM EXAM |
9 | Control of hydraulic jump |
10 | Water surface profiles |
11 | River contractions and expansions |
12 | Flood routing |
13 | Flow measurements structures |
14 | Flow through culverts |
Prerequisite(s): | CE 341 Fluid mechanics |
Textbook: | French, R. ‘Open Channel Hydraulics’, ISBN:0-07-022134-0, McGraw-Hill, inc, Singapore, 1987 Supplementary Materials: HEC-RAS User Manual, U.S. Army Corps of Engineers |
Other References: | |
Laboratory Work: | |
Computer Usage: | |
Others: | No |
COURSE LEARNING OUTCOMES
|
1 | Apply fundamental principles to solve basic open channel flow problems. |
2 | Describe stream and river behavior and response to alterations across different spatial and temporal scales |
3 | Apply standard mathematical and computational models of fluvial processes, |
4 | Design stable channels with varying capacities to transport (longitudinal profile, planform, and cross-section) |
5 | Understand and be conversant in describing interactions between physical and ecological processes in streams and rivers |
6 | Gain perspective through case studies on open channel hydrauliucs issues |
7 | Demonstrate understanding of modern numerical methods used to solve more complex problems. |
8 | Analyze data from a field study. |
9 | Understand associated limitations and uncertainties. |
COURSE CONTRIBUTION TO... PROGRAM COMPETENCIES
(Blank : no contribution, 1: least contribution ... 5: highest contribution) |
No | Program Competencies | Cont. |
COURSE EVALUATION METHOD
|
Method | Quantity | Percentage |
Homework |
4
|
2
|
Presentation |
1
|
4
|
Project |
1
|
30
|
Quiz |
4
|
2
|
Final Exam |
1
|
50
|
Total Percent: | 100% |
ECTS (ALLOCATED BASED ON STUDENT WORKLOAD)
|
Activities | Quantity | Duration(Hours) | Total Workload(Hours) |
Course Duration (Including the exam week: 16x Total course hours) | 16 | 3 | 48 |
Hours for off-the-classroom study (Pre-study, practice) | 14 | 5 | 70 |
Mid-terms | 1 | 3 | 3 |
Assignments | 4 | 5 | 20 |
Final examination | 1 | 3 | 3 |
Other | 1 | 6 | 6 |
Total Work Load:
|
150 | ||
Total Work Load/25(h):
|
6 | ||
ECTS Credit of the Course:
|
6 |