EPOKA UNIVERSITY
FACULTY OF ARCHITECTURE AND ENGINEERING
DEPARTMENT OF CIVIL ENGINEERING
COURSE SYLLABUS
2022-2023 ACADEMIC YEAR
COURSE INFORMATIONCourse Title: INTERMEDIATE STRUCTURAL DYNAMICS |
Code | Course Type | Regular Semester | Theory | Practice | Lab | Credits | ECTS |
---|---|---|---|---|---|---|---|
CE 548 | B | 1 | 2 | 2 | 0 | 3 | 7.5 |
Academic staff member responsible for the design of the course syllabus (name, surname, academic title/scientific degree, email address and signature) | NA |
Main Course Lecturer (name, surname, academic title/scientific degree, email address and signature) and Office Hours: | Prof.Dr. Hüseyin Bilgin hbilgin@epoka.edu.al , Fridays, 10:00-12:00 |
Second Course Lecturer(s) (name, surname, academic title/scientific degree, email address and signature) and Office Hours: | NA |
Teaching Assistant(s) and Office Hours: | NA |
Language: | English |
Compulsory/Elective: | Compulsory |
Study program: (the study for which this course is offered) | MSc in Civil Engineering, Profile: Water Resources Enginneering |
Classroom and Meeting Time: | Mondays/ 17:15-20:30 hrs, |
Code of Ethics: |
Code of Ethics of EPOKA University Regulation of EPOKA University "On Student Discipline" |
Attendance Requirement: | See EPOKA University attendance policy! |
Course Description: | Dynamic equilibrium of structures. The response of a single degree of freedom system to dynamic excitation: free vibration, harmonic loads, pulses and earthquakes. Response spectra. The response of multi-degree of freedom systems. Seismic behaviour of buildings and the basis of seismic building codes. |
Course Objectives: | Dynamic equilibrium of structures. Response of a single degree of freedom system to dynamic excitation: free vibration, harmonic loads, pulses and earthquakes. Response spectra. Response of multi-degree of freedom systems. Seismic behavior of buildings and the basis of seismic building codes. |
BASIC CONCEPTS OF THE COURSE
|
1 | Linear systems (oscillators) with one degree of freedom |
2 | Linear systems with different degrees of freedom |
COURSE OUTLINE
|
Week | Topics |
1 | Single Degree of Freedom Systems;Free Vibration (Un-damped free vibration, Viscously Damped Free Vibration) |
2 | Response to Harmonic and Periodic Excitation (Harmonic vibration of undamped systems, Harmonic vibration of viscous damping, Response to a vibration generator |
3 | Response to Harmonic and Periodic Excitation (Harmonic vibration of undamped systems, Harmonic vibration of viscous damping, Response to a vibration generator |
4 | Response to Arbitrary, Step and Pulse Excitations (Response to unit impulse, Response to arbitrary force, Step force, Ramp or Linearly increasing force, Step force with rise time) |
5 | Response to Arbitrary, Step and Pulse Excitations (Response to unit impulse, Response to arbitrary force, Step force, Ramp or Linearly increasing force, Step force with rise time) |
6 | Numerical Evaluation of Dynamic Response (Selected topics such as; Central Difference Method, Newmarks) |
7 | Earthquake Response of Linear Systems (Earthquake excitation, Equation of motion, Response quantities, Response history, Response spectrum concept, Deformation- pseudo velocity- pseudo acceleration, response spectra, Peak structural response from the response spectrum); |
8 | Midterm |
9 | Earthquake Response of Inelastic Systems (Force-deformation relations, Normalized yield strength-ductility factor, Equation of motion and controlling parameters, Effects of yielding, Response spectrum for yield deformation and strength, Yield strength and deformation from response spectrum, Yield strength-ductility relation); |
10 | Generalized SDOF Systems (Selected topics; Generalized SDOF systems, rigid-body assemblages, Systems with distributed mass and elasticity |
11 | Generalized SDOF Systems (Selected topics; Generalized SDOF systems, rigid-body assemblages, Systems with distributed mass and elasticity |
12 | Free Vibration of MDOF Systems; (Natural vibration frequencies and Modes, Free vibration response) |
13 | Dynamic Analysis and Response of Linear Systems (Two-degree of freedom systems, Modal analysis) |
14 | Earthquake Response of Linear Systems (Modal analysis, Multi-story buildings with symmetric plan, Peak response from earthquake response, Multistory buildings with symmetric plan); |
Prerequisite(s): | Exposure to linear algebra and matrices. You should have seen the following topics: matrices and vectors, (introductory) linear algebra and differential equations |
Textbook(s): | Dynamics of Structures: Theory and Applications to Earthquake Engineering, A. Chopra (Prentice Hall). • Dynamics of Structures, J. L. Humar (Balkema, 2002) - Optional • Elements of Vibration Analysis, L. Meirovitch (McGraw-Hill, 1986) - Optional • Finite Element Procedures, K. J. Bathe (Prentice Hall, 1995) - Optional |
Additional Literature: | Additional Course Notes |
Laboratory Work: | |
Computer Usage: | SAP2000, MAthcad, Matlab, Excel |
Others: | No |
COURSE LEARNING OUTCOMES
|
1 | Fundamental theory of dynamic equation of motion |
2 | Fundamental analysis methods for dynamic systems |
3 | Dynamic properties and behavior of civil structures |
4 | Modeling approach of dynamic response in civil engineering applications |
COURSE CONTRIBUTION TO... PROGRAM COMPETENCIES
(Blank : no contribution, 1: least contribution ... 5: highest contribution) |
No | Program Competencies | Cont. |
MSc in Civil Engineering, Profile: Water Resources Enginneering Program |
COURSE EVALUATION METHOD
|
Method | Quantity | Percentage |
Homework |
2
|
10
|
Midterm Exam(s) |
1
|
30
|
Final Exam |
1
|
50
|
Total Percent: | 100% |
ECTS (ALLOCATED BASED ON STUDENT WORKLOAD)
|
Activities | Quantity | Duration(Hours) | Total Workload(Hours) |
Course Duration (Including the exam week: 16x Total course hours) | 16 | 4 | 64 |
Hours for off-the-classroom study (Pre-study, practice) | 1 | 43.5 | 43.5 |
Mid-terms | 1 | 30 | 30 |
Assignments | 5 | 4 | 20 |
Final examination | 1 | 30 | 30 |
Other | 0 | ||
Total Work Load:
|
187.5 | ||
Total Work Load/25(h):
|
7.5 | ||
ECTS Credit of the Course:
|
7.5 |
CONCLUDING REMARKS BY THE COURSE LECTURER
|
Students are expected to participate fully in the educational process and at no time disrupt or diminish the educational experience of others. Safety, self discipline and respect for others are necessary elements in the educational processes employed in all courses, and certainly upheld in this one. All students should be familiar with the Student Code of Ethics. |